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Highlights 

  Objective 
–  Provide high-fidelity reactor and plant safety analysis models for integration into 

the advanced simulation code framework. 
–  Utilize existing safety simulation tools coupled with emerging  

high-fidelity modeling capabilities to quantify critical safety- 
related phenomenon in advanced reactor designs. 

  FY09 Milestones 
–  7/31 (M2): Coupling of High Fidelity and  

Integral Analysis Methods (ANL-AFCI-269). 
–  9/30 (M3): Prototypic Analyses Demonstrating  

Coupled Safety Modeling (ANL-AFCI-279). 
  FY09 Funding 

–  Initial funding level: $450k. 
–  Funding increase: $100k. 

 9/30 (M3): Global Sensitivity Metrics and  
Efficient Methods for Their Evaluation  
(ANL-AFCI-293). 



Global Sensitivity Evaluations 

  A polynomial regression technique has been developed that makes use of 
derivative information to efficiently evaluate global sensitivity metrics. 

–  Standard methods use large-scale sampling, or tangent linear models with 
derivatives computed based on finite differences. 

–  Requires many more code executions. 
  Challenge: Automatically evaluate derivatives based on existing, complex 

computer codes with minimal code modifications. 
  Automatic Differentiation (AD) 

–  Code in Fortran or C pre-processed to identify inputs and outputs of interest 
–  Automatic differentiation software (such as ADIFOR, OpenAD, TAMC) processes 

the code, adding derivatives for each elementary function. 
–  As processed code runs, the derivative is obtained by chain rule  

  Forward mode: follows the flow of the program, computes direct derivative of 
every output with respect to a selected input. 

  Reverse mode: records the flow of the program then reverses it, computes 
adjoint derivative of a selected output with respect to all inputs. 



Application of Automatic 
Differentiation 

  AD has been applied to a simplified model of reactor heat removal combined 
with the point-kinetics reactivity feedback module from SAS4A/SASSYS-1. 

  Goal is to obtain derivatives of reactor core temperatures with respect to 
uncertainties in reactivity feedback coefficients during an unprotected loss of 
flow. 

  Inconvenient details: 
–  10k lines of Fortran 77 code 
–  Use of equivalence statements and common blocks 
–  Subroutines with variable number of parameters 
–  Direct memory references, variable offset computations, memory copy 

operations.  
  Status: problematic language constructs rewritten, processed code compiles, 

different AD packages agree with each other. 
  Verification: 

–  Basic finite-differences and complex differentiation 
–  Derivative estimates do not agree with finite-differences results. 



High Fidelity Coupling 

  Work package scope is to accomplish the coupling of high fidelity RANS/CFD 
thermal-hydraulics analysis capabilities with an existing integral safety analysis 
computer code. 

–  Applied initially to multidimensional simulation of reactor coolant flow in ex-core 
volumes (plenums). 

–  Provide much better resolution of multidimensional temperature and flow fields, 
especially during low flow conditions that result in thermal stratification. 

  Thermal stratification (outlet plenum or cold pool). 
–  Impacts natural circulation driving forces, reactor vessel expansion, control-rod 

driveline expansion, IHX performance, pump inlet conditions, RVACS heat 
rejection, etc. 

  Current transient safety capabilities limited to perfect mixing or coarse, 1-D 
treatment. 

–  1-D treatment is currently limited to three, discrete, stratified layers. 
–  Correlations are used for incoming jet flow and entrainment. 



Tasks and Milestones 

  Definition of the coupling technique 
  Implementation of coupling mechanisms 

–  Implemented with the SAS4A/SASSYS-1 and STAR-CD codes. 
  Demonstration of the coupled capability with prototypic application 

–  Identified Phenix EOL Natural Convection test for demonstration 
•  Integrates well with the International Passive Safety work package. 
•  Opportunity to compare with experimental data. 
•  Incomplete benchmark specifications affect ability to develop realistic models. 

–  Obtained permission from Toshiba (through CRIEPI) to use 2006 4S plenum 
design description. 
•  Ongoing collaboration between ANL and CRIEPI to perform comparisons 

between SAS4A/SASSYS-1 and CERES. 
•  Impact of thermal stratification on natural circulation flow rates and core outlet 

temperatures had been identified as an issue. 
  Milestone Reports: 

–  July 2009: Coupling of High Fidelity and Integral Analysis Methods Report 
–  September 2009: Report on Prototypic Analyses Demonstrating Coupled Safety 

Modeling 



Phenix End of Life Testing 

  Natural convection test will provide data 
on primary system natural circulation flow 
rates following a steam generator dryout 
accident with manual scram and pump 
trip. 

  SAS4A/SASSYS-1 is being used to 
evaluate flow conditions as part of the 
IAEA CRP benchmark. 

  Axial thermocouple probes will be 
inserted in both the hot and cold pools 
prior to the test. 

  Provides an opportunity to compare 
higher-fidelity plenum modeling results 
with actual plant data. 

–  Axial temperature distributions. 
–  Impact of stratification on natural 

circulation development. 
  Incomplete benchmark specifications 

affect ability to develop realistic models. 



Impact of Stratification on Core Outlet Temperatures Impact of Stratification on IHX Inlet Temperatures 

Toshiba 4S Outlet Plenum 
Stratification 

  Previous work with CRIEPI compared system-wide results 
from PLOF and ULOF accident sequences. 

  Plenum results from the 2-D treatment (CERES) fall 
between SAS4A/SASSYS-1 stratified model (blue) and a 
perfect mixing model (red) during a PLOF. 

  More detailed treatment may reveal better mixing than 
CERES results predict. 
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Safety Modeling in the SHARP 
Framework 

  PRIMAR-4 implements the ex-core TH modeling capabilities of SAS4A/SASSYS-1. 
  Long-range goal is to couple SAS4A/SASSYS-1 into the SHARP simulation 

framework through PRIMAR-4 in order to provide whole-plant capabilities to 
support development of advanced methods. 
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Initial Plenum Model Coupling 

  Initial coupling between SAS4A/SASSYS-1 and Star-CD will be separate from the 
SHARP framework. 

  Coupling will eventually leverage ongoing work to couple Star-CD with the SHARP 
framework under the VHTR program. 



Whole-Plant Represented by  
SAS4A/SASSYS-1 Model  

  Whole-plant discretization by CFD is beyond 
current computing capabilities. 

  Core channel model represents central 
shutdown assembly; inner, middle, and 
outer core assemblies; and radial reflector. 

  PRIMAR-4 employs a modular network of 
compressible volumes connected by liquid 
flow segments. 

–  Inlet and outlet plenums. 
–  IHX, EMP, SG, RVACS, IRACS, piping, 

shields, etc. 
  Compressible Volumes: 

–  Quasi one-dimensional. 
–  Single temperature (perfectly mixed). 
–  Single pressure at reference elevation. 
–  Gravity head adjustments for inlet and 

outlet elevations. 
–  Include dV/dTw and dV/dP effects. 



Outlet Plenum Represented by 3-D or 
2-D CFD Model 
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Treatment of Boundary Conditions 

  Initial coupling is one way: 
 SAS4A/SASSYS-1 → STAR-CD 

Thermal feedback is not considered. 
–  Valid during steady-state (well mixed) 
–  Valid during initial pump coast-down (not 

buoyancy driven) 
–  Not valid at later times 

  Effects of model assumptions and fidelity on 
thermal stratification, flow distributions, and 
primary-side IHX inlet temperatures can be 
evaluated independently. 

  Individual core assembly flow rates and 
temperatures are used as boundary 
conditions for the STAR-CD CFD simulation. 

  For the free surface simulation, outflows to 
the IHX provide an additional boundary 
condition. 
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Transient Primary-Side IHX Inlet 
Temperatures 

  Only the 2-D were used to compute the full transient. 
  Calculation of initial flow coast down dominates computing time. 
  Treatment of free-surface motion results in significant increase in thermal mixing throughout 

the plenum. 
–  Converges to perfect mixing results by 2400 seconds. 

  Single phase model is generally consistent with the results from CERES. 
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Transient Temperature Profiles 



Future Directions 

  Initial scope of future work will be to include thermal feedback in the SAS4A/
SASSYS-1/STAR-CD coupling. 

–  Assess the impact on natural circulation flow rates in the PLOF and ULOF 
transient for 4S. 

–  Compare with CERES results. 
  With enhanced coupling, contribute additional results for the Phenix end-of-life 

natural convection test. 
–  Ongoing International Passive Safety Benchmark. 
–  Next IAEA RCM in two weeks. 

  Other opportunities: 
–  Monju hot pool stratification during startup testing (also IAEA benchmark) 
–  EBR-II cold pool stratification during PICT or SHRT testing (future benchmark?) 



Monju Startup Testing 

  Shutdown transients showed that inner 
barrel bypass holes influenced thermal 
stratification. 

  Passive safety evaluations were 
performed under the Reactor 
Campaign as part of an IAEA 
benchmark, but whole-plant (or 
even core) model was not included. 

  Additional core and primary system 
modeling information would be 
needed. 

  Milestone M2505070101 



Thermocouple Probe Temperatures  
During EBR-II Plant Inherent Control Tests 

EBR-II Cold Pool Stratification 

  Thermocouple probes present in the EBR-
II cold pool during PICT testing show 
thermal stratification during normal 
operations. 

  Thermal stratification gradient begins to 
increase near the primary pump inlet. 

  Behavior of the stratified layer during a 
transient may affect passive safety 
performance by impacting core inlet 
temperatures. 

–  Natural circulation flow rates. 
–  Core radial expansion. 

  Current year milestone M3505070201 in 
the Reactor Campaign documents the 
availability of EBR-II passive safety test 
results. 



Differences Between Steady-State Subchannel and RANS 
Coolant Temperature Distributions in a 217-Pin Fuel Bundle. 

Future Directions (continued) 

  Evaluate methods for determining 
subchannel model coefficients based on 
LES- or RANS-averaged cross flow terms. 

–  As part of multiresolution approach, 
improve existing subchannel model 
results. 

–  Also need to improve RANS results 
(from FY08). 

  Begin development of fast-running, 
modest-fidelity, whole-assembly, transient 
thermal-hydraulic modeling capability. 

–  Developed within the SHARP 
framework. 

–  Support coupling with whole-plant 
systems code. 

–  Replace existing subchannel models. 
–  Ultimate goal is high-fidelity, whole-core 

transient simulation capability. 



Future Directions (continued) 

  Continue initial work on application of automatic differentiation tools to 
simplified systems codes. 

–  Identify coding practices needed to facilitate AD of future modeling capabilities. 
  Perform Monte-Carlo-based sensitivity analysis of a whole-plant transient by 

coupling GoldSim with SAS4A/SASSYS-1. 
–  Assess sensitivity of fuel/clad/coolant temperatures on subchannel cross flow or 

cross-pin conduction. 
–  Assess sensitivity of transition to natural circulation as a function of core and IHX 

configuration would also be possible. 



Summary 

  Coupling between an existing, whole-plant systems code and a high-fidelity 
CFD code has been carried out. 

–  Evaluate the conditions of outlet plenum thermal stratification during a long-term 
PLOF. 

–  Modeling treatment (free surface vs. single phase) has a considerable impact on 
thermal mixing. 

  Future coupling efforts will include thermal feedback. 
–  Assess impact on natural circulation flow rates. 
–  Opportunities for additional participation in international passive safety 

benchmarks (Phenix, Monju, EBR-II). 
  In addition to ex-core plenum volumes, development of improved in-core whole 

assembly models is planned. 
–  Replace existing subchannel models (fuel bundle only) 
–  Support high-fidelity, whole-core transient capability. 

  Sensitivity Analysis: 
–  Continue initial work on application of automatic differentiation. 
–  Perform Monte-Carlo-based sensitivity analysis of a whole-plant transient 


